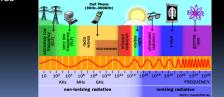
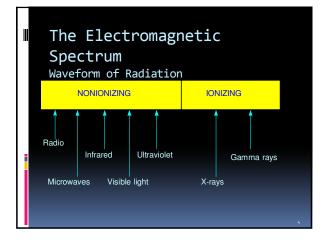
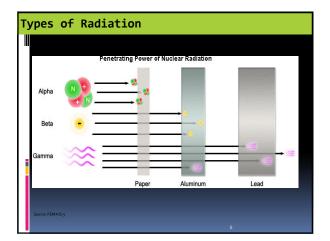


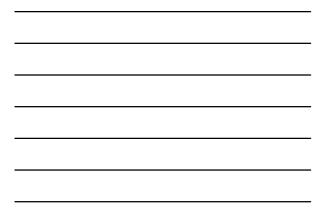
Thomas A Tallman, DO, FACEP Medical Director, Office of Emergency Preparedness and Disaster Medicine Cleveland Clinic

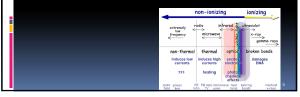

MEDICAL ASPECTS OF RADIATION INJURIES

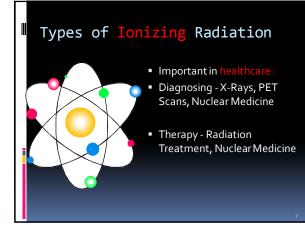


What is Radiation?


Form of energy


- Emitted by nucleus of atom or orbital electron
- Released in form of electromagnetic waves or particles





Difference between ionizing and nonionizing radiation

Energy levels:

- lonizing radiation has enough energy to break apart (ionize) material with which it comes in contact (knock off e-)
- Non ionizing radiation does not

Sources of Radiation Exposure

urring sources – ground, atm

ntal radiation – power plants

ures (patient) – x-ray, chemo

r<mark>ces (worker</mark>) - airports

X-Ray Penetrating electromagnetic waves – can cause internal damage

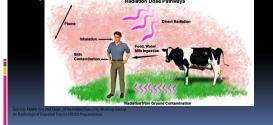
Can pass through soft tissue, but not bone

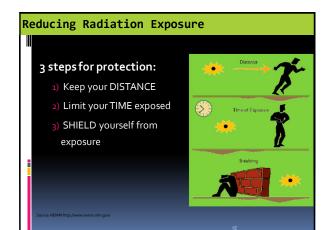
Originate in outer part of atom

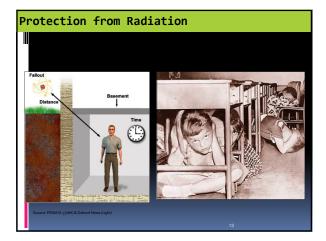
Used in medical procedures (diagnostic, CT, fluro)

Energy inversely proportional to wavelength The shorter the wave, the stronger the energy

Exposures to Radiation


- Tanning beds/sun tanning
- X-ray


I


- Mammogram
- CT scan
- Nuclear medicine
- Dental X-ray
- Bone scan
- Angioplasty

Radioactive Contamination

- Internal contamination requires medical decorporation
- 90% of external contamination can be cleansed by removing clothing and washing exposed body parts.

RADIATION INJURIES

- lonizing radiation: Radiation that occurs when atoms have 1 or more electrons ejected owing to interactions with x- or gamma rays or with alpha or beta particles or neutrons.
- Penetrating radiation: x-, gamma rays, neutrons
- Non-penetrating radiation: alpha, beta

- Humans affected externally and/or internally by radiation.
- I Roentgen = 1 rad = 1 rem =10 mGy = 10 mSv.

Radiobiological principles

Radiation targets water molecules in cells H2O ion<u>ized</u> Resulting free radicals are highly reactive and rapidly interact with other cellular molecules (DNA, mRNA, proteins).

RADIATION INJURIES

- Radiobiological principles
 Severity of biological effects due to:

 Dose
 Dose rate
 Shielding
 Energy (degree affects penetration)

- Radiation pathophysiology
 - Radiosensitivity varies directly with rate of cell proliferation (RBCs, G.I. Mucosa cells).
 - Radiosenstivity varies directly with number of future divisions (stem cells).
- Radiosensitivity varies inversely with degree of morphologic and functional differentiation (exception: lymphocyte).

- Types of radiation releases
 - Radiation dispersal device (RDD)
 - Nuclear reactor accident
 - Industrial/medical source accider
 - Nuclear weapon detonation
 - Thermal, blast, radiation trauma UTI Fallout (radioactive particles of dust)

RADIATION INJURIES

- Gу Signs & Symptoms
- Asymptomatic. 0.05-0.25 Asymptomatic; few with decreased WBC, platelets.
- 0.50-0.75
- Within 2 days, 10-20% with nausea, vomiting, fatigue; with mild WBC/platelet depression 0.75-1.25 some
- Symptomatic; most with hematologic changes; s drop 50% within 48 hrs. 1.25-2.0
- lymphocytes
 - 2.5-3.5 75% Serious; 50% mortality if untreated; lymphocytes drop within 48 hrs.
- GI subsyndrome within 2 weeks; death occurs in most CV, GI, CNS subsyndromes with death within 24-72 hrs.

Biological Effects of Radiation

- Affects cells originally exposed (cancer)
- Affects blood, tissues, organs, possibly entire body
- Effects range from slight skin reddening to death (acute radiation poisoning)

- Affects cells of future generations
- Keep levels as low as possible (wear lead)
- Reproductive cells most sensitive

Units of Measurement

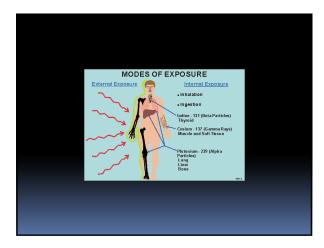
- Effect of ionizing radiation is determined by:
 - Energy of radiation
 - Material irradiated
 - Length of exposure
 - Type of effect

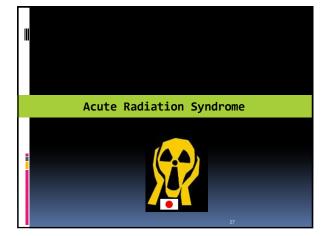
Delay before effect seenAbility of body to repair itself

Radiation Units of Measurement

Roentgen (R) - expression of exposure to xrays/gamma rays

Radiation Adsorbed Dose (rad) – amt of energy released to / absorbed by matter when radiation comes into contact with it


Radiation Equivalent Man (rem) - Injury from radiation (depends on amt of energy imparted to matter)


Permissible exposure radiation doses

Body Part Exposed	Permissible Dose (rem per quarter)
Wholebody	1.25
Hands, forearms, feet, ankles	18.75

- 3 Types of radiation exposure
 Irradiation
 - Internal contamination
 - External contamination

Toxicity is Proportional to Dose

- LD₅₀ for humans (level of exposure that is lethal to 50% of people exposed to that dose):
 - 3.5 to 4 Gy
 - Without supportive care 4.5 to 7 Gy

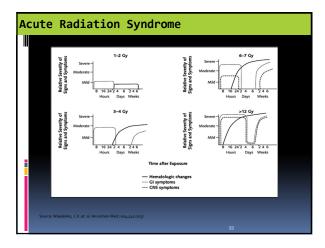
 - With antibiotics, transfusions and other supportive care >7-10 Gy Possibly with hematopoietic cell transplantation
- In a radiation incident, shielding may result in heterogenous body dosing
 - A small portion of bone marrow that is shielded could reconstitute hematopoiesis

RADIATION INJURIES

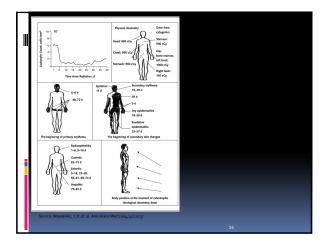
- Acute Radiation Syndrome (ARS)
 - Responsible for most deaths during first 60 days post-exposure.
 - Course affected by age, pre-existing health and nutritional status, concomitant illness/injury.
 - Composed of 3-4 subsyndromes which are sequential.

Acute Radiation Syndrome

- There are 4 primary subsyndromes
 - Cutaneous
 - Hematologic
 - Neurovascular
 - Gastrointestinal
- Psychological consequences should be anticipated and addressed


- Acute Radiation Syndrome (ARS)
 - Subsyndromes

- Hematopoietic (1-5 Gy)
- Gastrointestinal (6-30 Gy)
- Cardiovascular (>30 Gy)
- Neurologic (>30 Gy)



- 10 Gy - - - > 3 days latency - - -> system sloughs - - - > death in 2 weeks post radiation

♦Cerebral system syndrome - 20 G - - -> 1 hour latency - - - -> death in 1 day

- Acute Radiation Syndrome (ARS)
 - Hematopoietic

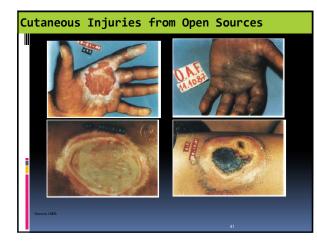
- All blood stem cells undergo radiation-induced cell death (lymphocytes, granulocytes, thrombocytes, & RBC precursors)
- Pancytopenia
- Sepsis usual cause of death
- Hemorrhage
- Recovery: Months-years

- Acute Radiation Syndrome (ARS)
 - Gastrointestinal
 - Targets: G.I.stem cells, lymphocytes in Peyer's patches
 - Mucosal lining sloughs, mucosal integrity damaged, mucosal hemorrhage, exudation, ulceration, third spacing, fluid/electrolyte imbalance, paralyticileus, impaired nutritional absorption, bacterial translocation (sepsis)

Symptoms	Range of severity
Diarrhea - frequency	Twice/day >10 times/day
Stool - consistency	Bulky to watery
Blood in stools	Occult to gross hemorrhage
Abdominal pain/cramps	Minimal to excruciating
Nausea	Mild to excruciating
Vomiting	1 per day to >10 times per day

		_
		_

- Acute Radiation Syndrome (ARS)
 - Cardiovascular/Neurologic
 - Mixed


- Burning of skin within <u>minutes</u>
- Pyrexia, ataxia, decreased higher cortical and motor function, hypotension, increased intracranial pressures within <u>minutes to hours</u> of exposure
- Necropsy: Microvascular & endothelial damage, focal brain hemorrhage & necrosis, white matter edema, demyelination

Symptoms	Range of severity
Nausea	Mild to excruciating
Vomiting	1 per day to >10 times per day
Anorexia	Able to drink to requiring parenteral nutrition
Autonomic dysfunction	Low-grade fever to hypotension
Headache	Minimal to intense
Neurological deficits	No deficits to unarousable

Acute Radiation Syndrome-Neurovascular

Symptoms	Range of severity
Erythema	Minimal to severe
Altered sensation	Pruritis to severe pain
Edema	Asymptomatic to total dysfunction
Blistering	Rare to bullae with hemorrhage
Desquamation	Absent to confluent
Ulcer/necrosis	Epidermal only to muscle/bone
Hair loss	Thinning to complete
Onycholysis	Absent to complete

Acute Radiation Syndrome

Fourstages

- 1: Prodrome
 - Initial symptoms: Important to observe, time, and document
 - Time of onset is inversely related to dose received
 - Anorexia, weakness, fatigability: Typical/nonspecific
 CV/CNS S&S: Ominous

 - Nausea, vomiting, diarrhea (possible bloody): Important to note

Acute Radiation Syndrome

Four stages

- 2: Latent period
 - Inversely related to dose
 - At lower doses: Essentially symptom free; mild fatigue; prone to infection and delayed wound healing.

RADIATION INJURIES

 Prodromal/Latency Periods as a Function of 					
		Dos	е		
<u>Dose</u> Gy	<u>Onset</u> h	Durat	ion h	<u>Latency</u>	
0.5-2.0	6 or >	<24	3 wks	or >	
2.0-3.5	2-6	12-24	2-3 W	/ks	
3.5-5.5	1-2	24	1-2.5 V	vks	

■ >5.5 < 1 48 2-4 days

- Acute Radiation Syndrome
 - Four Stages
 - 3: Manifest Illness
 - Prodromal symptoms recur
 - Subsyndrome specific effects develop
 - Can last for several weeks
 - Requires intensive monitoring and care

Acute Radiation Syndrome

Four Stages

4: Recovery

- GI epithelium replaced
- Hematopoietic elements return to normal
- May take years to recover

RADIATION INJURIES

- Miscellaneous conditions
 - Skin

Initial transient erythema for

- few days
- Secondary erythema progressing to blisters to ulcers • within 1 month
- The greater the exposure the earlier the manifestations

- Miscellaneous conditions
 - Pulmonary
 - Chernobyl
 - Acute radiation pulmonitis
 - Severe SOB + significant crepitus
 - Significant mortality from hypoxic coma within 2-4 wks later

Lymphocyte counts in Humans 24-48 Hours <u>After Radiation Exposure</u>

 Lymphocyte Count (x100) 	o/mm3) Dose Range (Gy)
• <u>3.0</u>	<0.25
<u>1.2-2.0</u>	<u>1-2</u>
<u>0.4-1.</u> 2	<u>2.0-3.5</u>
<u>0.1-0.4</u>	<u>3.5-5.5</u>
• <u><0.1</u>	<u>>5.5</u>

RADIATION INJURIES

- Mass Casualty Incidents
 - Standard MCI + Radiation Injuries: Standard Triage. ARS victims only tagged "DELAYED"
 - Radiation MCI only
 - 3 triage categories:
 Radiation injury unlikely
 - Radiation injury probable
 - Radiation injury severe

RADIATION INJURIES

Radiation MCI categories:

- Radiation injury unlikely
- Absence of nausea, vomiting, diarrhea
- Radiation injury probable
- Presence of symptoms, timing, severity, duration
- Radiation injury severe
 - Presence of hyperthermia, hypotension, prompt erythema, CNS dysfunction

RADIATION INJURIES CHERNOBYL

:	FIRS PRODROME: LYMPHS (3-6D):	<u>5T DEGREE</u> >3H 600-1000	SECO PRODROME: LYMPHS (3-6D):	<u>ND DEGREE</u> 1-3H 300-500
:	SKIN BURNS: TBI DOSE: SURVIVAL	SLIGHT 1-2 Gy PROBABLE	SKIN BURNS: TBI DOSE: SURVIVAL:	SLIGHT 2-4Gy POSSIBLE
	• THI			
		RD DEGREE	 FOUR 	RTH DEGREE
	PRODROME:	1/2-1H	PRODROME:	<1/2H
:		1/2-1H		<1/2H
	PRODROME: LYMPHS (3-6D):10 SKIN BURNS:	1/2-1H	PRODROME:	<1/2H
•	PRODROME: LYMPHS (3-6D):10 SKIN BURNS: ENTERITIS:	1/2-1H 0-200 SEVERE 	PRODROME: LYMPHS (3-6D):<	<1/2H 100
:	PRODROME: LYMPHS (3-6D):10 SKIN BURNS:	1/2-1H 0-200 SEVERE	PRODROME: LYMPHS (3-6D):< SKIN BURNS:	<1/2H 100 40-90%

RADIATION INJURIES

Contamination issues

 Decontamination performed

- To reduce risk of contaminating personnel and environment
- To reduce risk of internal contamination of victim

RADIATION INJURIES

Contamination issues

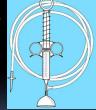
 No medical personnel have ever received an exposure anywhere near the degree to cause radiation effects.

Contamination issues

- 95% of decon occurs with:
- Removal of patient's clothing
- Soap & water

RADIATION INJURIES

- Contamination issues
 - Portals of entry for internal contaminationWounds
 - Inhalation
 - Ingestion



- Decon procedures
 - Environmental/personal protection
 - Attend to medical problems first
 - Remove victim's clothes
 - Shower, soap/water
 - Tape and lift contaminant material
- Water/bleach or citric acid or EDTA
- Water/piedchor citric a
- Water/mild abrasive
- Wrap/cover areas not deconned adequately and allow sweat/skin sloughing to decon

Decon procedures

- Monitor effectiveness after every decon procedure
- Contaminated wounds to be irrigated
- Surgical debridement of wounds possible

RADIATION INJURIES

- Decon procedures for environs/personnel
 - Gowns, cap, gloves, mask, shoecovers Decrease air flow

 - Cover floor, walls (plastic, brown paper rolls)
 - Contaminated clothes in plastic/paper bags
 - Avoid splashing
 - Monitor before moving out of area Personal dosimeters
 - Drums to contain effluent
 - Restrict entry

- Contamination issues
 - 4 means of reducing risk of internal contamination:
 - Reduce intake from inhalation, ingestion, or absorption from wounds
 - Decrease uptake through use of stomach/lung lavage, emetics, antacids
 - Reduce deposition of isotopes in an organ (KI)
 - Increase rate of elimination through chelating agents, diuresis, laxatives

- Contamination monitors
 - Direct

- Whole-body radiation counters, thyroid scanners, woundmonitoring instruments
- Indirect
 - Bioassay sampling: Nasal swabs, urine/feces samples

Lach

RADIATION INJURIES

- DMAT functions
 - Obtain on-site Radiation Safety Officer
 - Team Commander remains above RSO
 - May work in warm/cold zones as long as no further radiation exposure
 - Obtain and train with standard radiation protocols
 - Treat Medical/Surgical matters first before Radiation matters
 - Recognize psychogenic factor

RADIATION INJURIES

DMAT functions

- Irradiated victims
 - Recognize no team danger
 - Treat based on exposure protocols
 - Assess and document signs/symptoms
 - Rule out contamination
 - Appropriate triage
 - No prodrome: Eventual release
 - CV/CNS prodrome: Palliative measures
 - Probable exposure: Eventual transport

DMAT functions

- Contaminated victims
 - Recognize no team danger
 - Remember to treat conventional injuries first
 - Minimize internal contamination
 - Remove external contamination
 - Appropriate triage and transport

Incidents	Description	Anticipated Deaths
Radioactive source accident	Loss or theft of a radiological source (e.g. Goiania)	0-100s
Nuclear reactor accident	Release of radioactive gas or material (e.g. Chernobyl)	0-1,000s
Radiological dispersal device	Device or scheme for dispersing radioactive lsotope (e.g., dirty bomb or radioactive material in the food supply)	0-100s
Radiological exposure device (open source)	Radioactive material intended to expose people in the vicinity (e.g. Cesium source on a train)	100s-1,000s
Improvised nuclear device	Incorporates radioactive material intended to produce a low yield nuclear explosion	1,000s-1,000,000s
Military-grade nuclear device	Incorporates radioactive material intended to produce a fusion detonation	1,000,000s

 10-Kiloton Improvised Nuclear Device Aerosol Anthrax Pandemic Influenza
4) Plaque
5) Blister Agent
6) Toxic Industrial Chemicals
7) Nerve Agent
8) Chlorine Tank Explosion
9) Major Earthquake
10) Major Hurricane
11) Radiological Dispersal Devices
 Improvised Explosive Devices
13) Food Contamination
 Foreign Animal Disease (Foot and Mouth Disease)
15) Cyber Attack

	Radiation			
۱	"Accidents"			
	Worldwide (1944	1 Radiation Devices		324
	10/ 10/100 (15/	Sealed Sources	212	
	-	X-ray Devices	86	
	Jul 2011):	Accelerators	25	
	(Classified)	Radar Generators	1	
	"Classification	Radioisotopes		103
	by Device"	Diagnosis and Therapy	48	
	0, 201200	Transuranics	27	
		Fission Products	11	
		Tritium	2	
		Radium Spills	1	
		Other	14	
		Criticalities		20
		Critical Assemblies	8	
		Reactors	6	
		Chemical Operations	6	
			Total	447
	Source: REAC/TS Registry			
		69		

Isotope Ingestion

- Alexander Litvinenko
 - Fell ill November 1, 2006
 - Died November 23, 2006

Open Source Exposure

Taiwanese graduate student

- October 1994 February 1996
- Survived attempts by fellow student to poison with ³²P and other chemicals
- Taiwan scientist rivalry
 - In 2003, a nuclear scientist planted Iridium-192 pellets in the office of a business rival Sickened the rival and 74 other people

Open Radiation Sources

Goiania, Brazil – 1987

- ¹³⁷Cs source taken from vacant clinic Opened to sell metals to recycler
- Glowing blue Cesium handled by adults and children 28 cases of radiation sickness
- 112,000 people screened
- Russia 2002 & 2003
- 1,000 nuclear generators used to power remote lighthouses
- Generators are unguarded and frequently stolen or vandalized by scrap metal hunters Multiple incidents resulting in exposed cores and injuries

Open Radiation Sources

- Juarez, Mexico 1984
 - ⁶°Co pellets from junked radiotherapy device
 - Recycled into steel and used for construction
 - Over 200 people exposed from Mexico to Illinois
 - 1 fatality, 4 injuries
 - 109 homes demolished as part of decontamination

Miscalibrated Radiotherapy Devices

- Houston, TX 1980 (7 fatalities)
- Columbus, OH 1974-76 (10 fatalities, 78 injuries)
- Epinal, France 2004-05 (1 fatality, 13 injuries)
- Panama City, Panama 2000-01 (17 deaths, 11 injuries)

Radiological Dispersal Device (RDD)

Chechen Rebels, 1995

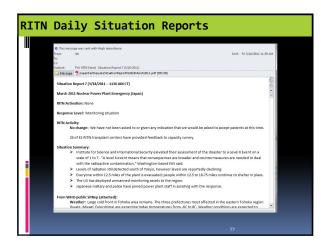
- Planted cesium and explosives device in a
- playground

 Notified local TV station
- Never detonated
- Chechen Rebels ,1998
 - Dirty bomb recovered next to a railway line

The Fukushima Disaster

Japan Earthquake on March 11, 2011 resulted in a massive tsunami

Tsunami wave topped 33 foot sea wall hobbling the Fukushima Daiichi Nuclear Power Statio Aer


Reactors overheated and melted Hydrogen gas explosions destroyed reactor buildings Spent fuel rods in open pools of

water became exposed Worst nuclear disaster since

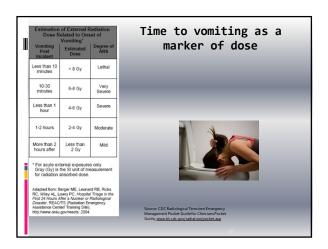
Chernobyl in 1986 No serious radiation exposur

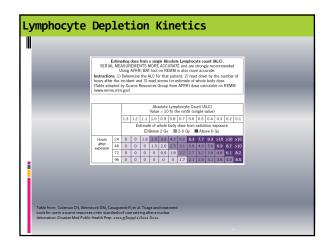
Surrounding areas evacuate

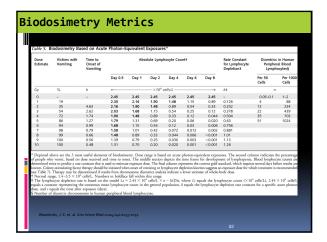
What did RITN do?

Biodosimetry Tools

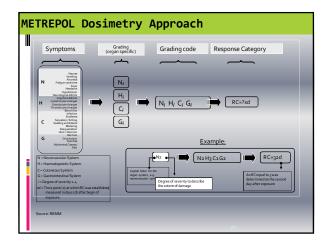
Definition

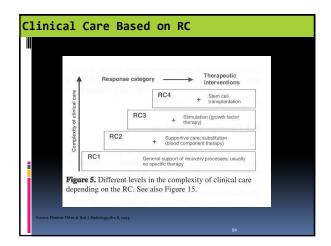

- Biodosimetry is the use of biological markers to estimate dose
- Dosing after radiological and nuclear events is complicated by a variety of factors, including shielding

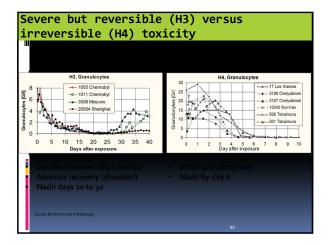

Standard approaches

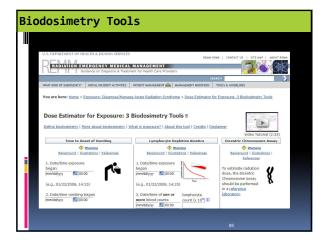

- Time to vomiting
- Lymphocyte depletion kinetics
- METREPOL Combines clinical data and blood cell counts
- Dicentric chromosomes in peripheral blood lymphocytes

Research approaches


- Proteomics
- Markers of DNA damage







Biodosimetry Tools

- AFRRI Biodosimetry Assessment Tool (BAT)
 Downloadable software
- Radiation Event Medical Management (REMM) www.remm.nlm.gov
 - Web-based software
 - Provides suggested treatments based on estimated dose
 - Standardized admission and treatment order templates

-

Data Collection Protocol

- Incorporated into standard NMDP data collection system
- Will feed consistent information for review after an event
- Will track progress of victims
 - Online data entry
 - Real-time feedback of data

Suggested Treatments Based on Dose

- All treatments are based on extrapolation:
 - Radiation accident victims
 - Animal studies

- Patients with cancer
- FDA approval requirements limit guidelines and inclusion of certain agents in the Strategic National Stockpile

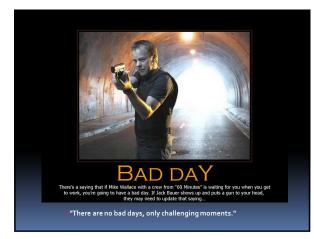
Consensus Guid											
	fance f	ior Tree	tment	Raser	l on Fx	osure	Dose a	and Fw	ent Size		
							DUSC 6	IIII EV	ant 3121	-	
 <u>View recomm</u> 1. Click on 				hole-bod	y dose	(Clear)					
2. View co				ce based	lon						
		f casualti									
• V	Ath or w	thout inj	ury/burn								
 Show recomm 	rendation	ts for all	doses/sc	enarios	(Clear)						
					(
			Whole	-body D	ose (Gy)	What is	3y (Gray)	2			Event Size, ± Injury
Consider Treatment	1	2	3	4	5	6	7	8	9	10	(Small event: 5 100 vi Mass event: 5 100 vi
					tments i			distanta a			
		NOTE: A	n poten	uai trea	tments	nay not	ve reas	nore in a	iarge s	ze ever	Small/ho injury
Prophylactic			-	-	ž	-		-	<u> </u>		Massino injury
Antibiotics [†]	<u> </u>		-	-	ž	-		-			Small/injury + bum
Anthiotics			-	-	ž			-	<u> </u>		Masaliniury + burn
					•						
											descent to a holomore
	T				1						Smal/ho injury
Cytokines/	-			<u> </u>	4		-	-			Massino injury
Bone Marrow Growth											
Gytokines/ Bone Marrow Growth Factors ¹					1 1						Masalno injury Small/njury + bum Masalinjury + bum,
Bone Marrow Growth					1						Massino injury Small/injury + bum
Bone Marrow Growth					1 1						Massino injury Small/njury + bum Massinjury + bum

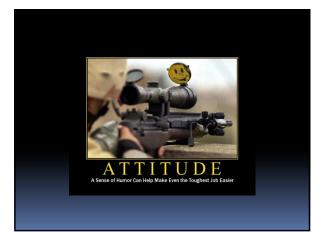
Mitigation and Supportive Care

- Blood products irradiated and leukoreduced
- Antibiotics
- G-CSF
- Improved survival in irradiated nonhuman primates
- Maximal benefit may require administration <24 hours after exposure
- Significant potential to reduce resource utilizationLimited supply in the Strategic National Stockpile
- Potassiumiodide
- Decorporating agents
- Template order sets and doses (<u>www.remm.nlm.gov</u>)

Summary

- There are a variety of incident scenarios
- Hematologists, oncologists, and stem cell transplant experts may be called upon to care for casualties
- Have a plan and get involved!





- Bibliography
 Reeves G: Radiation Injuries. Critical Care Clinics Vol.15, April, 1999
 Voelz G2: Radiation Injury. Textbook of Emergency Medicine, Schwartz
 Virtual Naval Hospital: External Irradiation. www.wnh.org/BUMEDINST64,70.10A/ExtTradiation.html
 Virtual Naval Hospital: External Contamination. www.wnh.orgibuMEDINST64,70.10A/ExtContamination html
 Virtual Naval Hospital: Neuron ExtorMamination.
 Virtual Naval Hospital: Neuron ExtorMamination.
 Virtual Naval Hospital: Internal Contamination.
 Virtual Naval Hospital: Internal Contamination.
 Virtual Naval Hospital: Internal Contamination.
 Virtual Naval Hospital: Neuron Exposure.
 Virtual Naval Hospital: Neuron Exposure.
 Wirtual Naval Hospital: Neuron Exposure.
 Virtual Naval Hospital: Neuron Exposure.

