Approach to Blast and Burn Injuries

Jim Augustine, MD Medical Director, Assistant Fire Chief DC Fire EMS

OBJECTIVES

- Common Scenarios of Blast and Burn
- Differentiate HE and LE Incidents
- Prehospital Emergency Management Strategies, Documentation Priorities
- Terrorist Incident Considerations

OUTCOME OF FIRE

In the US, 1.1 million burns per year
45,000 persons hospitalized
4,500 deaths

The IED Issue

Blast +

Radioactive
 Material
 Chlorine

Trauma +Burn

Burn + Shrapnel

Timely Materials in Reference Libraries at <u>CdC.gov</u>

Burn Prevention = Capacity Issue Journal of Burn Care & Rehabilitation March / April 2005

> Average 400 burn beds available in the US on any given day.

Blast and Burn Incidents

Critical Scene Considerations
 Scene Safety a Priority
 Evidence a Priority
 Hot Zone Considerations

Blast and Burn Incidents

Victim ConsiderationsBlast First, Burn Second

Quiet is Bad
 Triage using no Equipment

Explosives

High-Order (HE) Low-Order (LE)

High-Order Explosive (HE)

TNT C-4 Semtex Nitroglycerin Dynamite ANFO (Ammonium nitrate fuel oil)

Low-Order Explosive (LE)

Pipe bombs Gunpowder Pure petroleum-based bombs (Molotov cocktails) Aircraft improvised as guided missiles

Blast Injury

- Primary from the BLAST WAVE
- Secondary from Flying Debris and Bomb Fragments
- <u>Tertiary</u> from Individual being thrown by Blast Wind
- <u>Quaternary</u> from later complications of all types

BLAST WAVE

- Expanding gas mass under high temperature and pressure
- Reaches velocities of 1500 miles per hour
- Increased force in a confined space
- More dense medium = more force, like water

Common Blast Injuries

- Air Filled Structures: Lungs, Ears, Intestines
 Head Concussion
 Globe Rupture
- Impalements

Blast Lung

- Pressure following path of least resistance
- Most common fatal injury among survivors
- Classic Triad
 - Apnea
 - Bradycardia
 - Hypotension
- Air emboli from torn lung tissue

Secondary Injury

Flying Debris
Bomb Fragments
Shrapnel placed in bomb

EMS Responsibility

Notify Hospitals as rapidly as possible Identify HE and LE incidents Obtain info on potential "dirty bomb" Relay this information to treating hospitals

Blast and Burn Victims

Assess life threat ABCs
Unconventional Positioning
Prepare for Impalements
ABC Treatment

Blast and Burn Victims

- Blast Injury = Consider Spinal Injury
- Shrapnel Injury = Spinal Injury very Unlikely. Position for airway
- Burn + Shrapnel = Position for airway and comfort

The Terrorism Blast Issue

Experience from Irag
Experiences from Israel
CDC Studying
Dr Tim Davis

Environment Affects Injury Patterns

Open Space –

- Park, street, open market, stadium, roadway
- 10% fatalities
- Blast impulse weakens rapidly unless reflected
- Nails still dangerous > 100 meters
- Blast lung not seen in immediate survivors
- Secondary device concern

Environment Affects Injury Patterns

Confined space

- Inside bus, train,
- or auditorium
- 20% fatalities
- Blast pressures intensified x 2-9
- Blast lung (<24°) and abdomen (<48°)
- More complicated rescue

Environment Affects Injury Patterns

Structural collapse (Enclosed space)

- Inside a reinforced multi-story building
- 20% + fatalities
- Complex reflections
- Blast pressure up x 2-9
- Complicated rescue
- Delayed care

Casualty Benchmarks Small (5 kg) Open Space Suicide Bombing

Casualties – 1-30 (Israel - average 23, range 1-99) Severity

- killed
- 1-5 1/3rd killed or admitted 5-10 J - admitted
- treat & release 20 } 2/3rd outpatient treatment Injury patterns
 - 1° Blast trauma < 5 meters kill zone
 - Occult nails < 100 meters injury zone
 - Victim considerations = temporary deafness, blinded, panic, Tetanus

Casualty Benchmark Small (10 kg) Confined Space Backpack Bomb

Casualties - 20-50 bus and 150-200 train /bomb - 70% of fatalities are Dead on Scene (DOS)

Severity - killed

Simplified Severity Benchmark = 1/3rd killed or a latent 20% = 1/3rd killed or admitted > 24° .

60%

- admitted 20%

- treat and release
- Injury patterns
- 1° Blast trauma anywhere within bus or train cabin - Victims deaf and blinded, panic, risk of Tetanus
- Complicated and delayed train rescue

Casualty Benchmark Structural collapse bombing (100-1,000 kg TNT-eq)

Casualties - 100 - 3,000

largely based on bomb size, time of day, warning, building structure, and evacuation proficiency
 90% of fatalities are DOS

Severity - different pattern from Earthquake or structural collapse

- explosives pulverize building

Injury patterns - Blast lung, blast abdomen

Rescuers must weigh risk vs benefit of rescue ingress

Asymmetric War requires

Asymmetric Triage

Standard Triage Will Not Work

- Cannot assume walking wounded are "minimals".
- Nails leave no or little external injury
- Casualty can be 100 meters from event - T2-Delayed & T3 can become T1/Immediates
- Apneic casualties are dead.
- Critical-Expectant evacuated only after T2 and T3

TE Davis, CY Lee

CDC Prep Summary

- 1. Preparedness is not rocket science - but unfortunately neither is terrorism.
- 2. Terrorists take advantage of lessons learned – few barriers to entry for small-scale attacks
- 3. Principles and trends evolve (drift)
- 4. Casualty patterns for explosions are predictable
- 5. Response and health assets -> the real targets?

Blast Events in America

- Half of all initial casualties will seek medical care over a one-hour period
- "Upside-down" triage
- Less injured bypass EMS triage and go directly to the closest hospitals
- Most severely injured arrive later by EMS

WHAT HAPPENS IN FIRE

Immediate Trauma
 Inhalation of Smoke
 CO, cyanide poisoning
 Burns

IMMEDIATE REACTIONS

- Eyes and nose and throat irritated
- Cough uncontrollably
- Stand up and run
- Confused and disoriented

SKIN

- The skin is a specialized protective layer, with a design to keep the body at a fairly constant temperature
- The design of the skin leaves it prone to injury at certain levels
- Injury by heat, cold, electricity, chemicals, and tearing all tend to occur at the same level

SKIN INJURIES

- Resulting injuries are classified as partial thickness, and full thickness
- Treatment tends to be the same for all these insults. This also means the injury is worsened by the same things. That is why we don't rub burns or frostbite

PARTIAL THICKNESS BURN

Sunburn or thermal burn from a hot object Frostbite Chemical burn from ammonia, hair chemicals Blister agents Strawberry from sliding in baseball Road rash from a motorcycle accident

FULL THICKNESS BURN

Thermal burns Frostbite Chemical burns sulfuric acid, lye, or mustard gas Road rash from a motorcycle accident Degloving injuries from an industrial accident

COMPLICATING BURN INJURIES

Superheated air and gasesSootDangerous Chemicals

SMOKE INHALATION

- Inhaled poisons move through the airway to the lungs
- But on the way, damage to the throat, airway, and critical cells
 Dries those areas
- Airway swells and constricts
- Irritation causes intense cough
- Lungs very effective in moving CO and cyanide into the blood

BURNING THE SKIN

- At 150 degrees, water burns in a few seconds
- A child is burned even more quickly
- Worse injuries if steam or chemicals

PARTIAL AND FULL THICKNESS INJURIES

Infants have extremely thin skin Children have thin skin Adults have thick skin Elderly have thin skin

BURN DEATH

- **INHALATION**
- UNDERLYING MEDICAL PROBLEMS
- SHOCK
- PENETRATING BURNS
- **INFECTION RISK**
- DEGREE OF BURN

START OFF PARTIAL THICKNESS, THEN PROGRESS

 High Voltage electrical injuries
 Hydrofluoric acid and concentrated alkali

Steam burns

CHEMICAL AGENTS

Alkali much more dangerous then acid Some agents are very bad players: hydrofluoric acid the worst Dust or blot off, then.... Irrigate like crazy with warm, clean water

Blister Agents

FIELD BURN MANAGEMENT

Avoid personal injury Remove victim from further injury Stop the burning process Protect the patient from cooling, shivering – remember the first job of the skin is to keep the person warm!!

TREATMENT OF SMOKE INHALATION

Immediate placement of 100% oxygen in suspected inhalation MUST HAVE moisture with their oxygen Bronchodilator as well

CO POISONED

Treatment ultimately depends on neurologic symptoms CO keypoints

- CO keypoints Single Digit CO typically not symptomatic
- Moderate symptoms 10 20%
- Critical over 20%
- Treatment is Flooding the Hemoglobin and tissues with Oxygen

FIELD BURN MANAGEMENT

Treat other injuries **Clean Dressing** Let the Patient tell you what feels best

THE BIG **QUESTION:** WET OR DRY? The issue is hypothermia and

- patient comfort
- Small first and second degree burns managed with wet dressings at patient request
- Large burn areas, second or third degree, must not be cooled

TRIAGE OF MAJOR BURNS

- Moderate Full Thickness
- Airway compromise
- Second Degree, Large to Small
- Fatal Full Thickness, Severe
- Inhalation Injury First Degree

WRITE OFF IN OVERWHELMING MCI

- Obvious Fatal
- ■No Vital Signs
- ■Shock
- Breathing Compromise
- Airway Compromise

WRITE OFF IN MAJOR MCI

Does not mean "Don't Treat"
Warm
Pain Control
Comfort

DIRTY BOMBS

- Protocol Change
- Consider in a High Risk Location
- ■Rescuer Decon will be Necessary
- Don't Track off-scene
- Respect Hot Zone Border

Burn/Blast Events

Evidence Preservation

- Document in as much Detail as Possible
- IN MOST STATES:
- ■All Burns must be Reported

SUMMARY

The best burn = one that is Prevented Blasts have predictable injury patterns IED Incident Prep Needed Scene Safety Evidence Preservation Documentation